精英家教网 > 高中数学 > 题目详情

已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。

(Ⅰ) 证明:BE⊥CD’;

(Ⅱ) 求二面角D'-BC -E的余弦值,

解:(Ⅰ)∵AD=2AB=2,E是AD的中点,

    ∴△BAE,△CDE是等腰直角三角形,∠BEC=90°,即

    又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC

     ∴BE⊥面D'EC,∴BE⊥CD’.               ……………4分

    (Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC

    垂足为F,连接D’M,D'F,则D'M⊥EC.

    ∵平面D'EC⊥平面BEC  ∴D'M⊥平面EBC

∴MF是D'F在平面BEC上的射影,由三垂线定理得:D'F⊥BC

∴∠D'FM是二面D'-BC-E的平面角.…………8分

在Rt△D'MF中,,

,

∴二面角D’-BC—E的余弦值为  …………………………………………………14分,

法二:如图,以EB,EC为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.

             ……………8分

设平面BEC的法向量为;平面D'BC的法向量为

,

     取x2=l………12分

∴二面角D'-BC-E的余弦值为………………14分[来源:Z.xx.k.C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知矩形ABCD中,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2
5
,则棱锥O-ABCD的侧面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知矩形ABCD中,AB=
2
,AD=1,将△ABD沿BD折起,使点A在平面BCD内的射影落在DC上.
(1)求证:平面ADC⊥平面BCD;
(2)求点C到平面ABD的距离;
(3)若E为BD中点,求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB,交SB于E,过E作EF⊥SC交SC于F.

(1)求证:AF⊥SC;

(2)若平面AEF交SD于G,求证:AG⊥SD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,A(-4,4)、D(5,7),中心E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>