精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是(  )
分析:根据选项令f(x)=
f(x)
ex
,可以对其进行求导,根据已知条件f′(x)>f(x),可以证明f(x)为增函数,可以推出f(a)>f(0),在对选项进行判断;
解答:解:∵f(x)是定义在R上的可导函数,
∴可以令f(x)=
f(x)
ex

∴f′(x)=
exf′(x)-f(x)ex
(ex)2
=
ex[f′(x)-f(x)]
(ex)2

∵f′(x)>f(x),ex>0,
∴f′(x)>0,
∴f(x)为增函数,
∵正数a>0,
∴f(a)>f(0),
f(a)
ea
f(0)
e0
=f(0),
∴f(a)>eaf(0),
故选B.
点评:此题主要考查利用导数研究函数单调性,此题要根据已知选项令特殊函数,是一道好题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案