精英家教网 > 高中数学 > 题目详情

若常数,则函数的定义域为        .

练习册系列答案
相关习题

科目:高中数学 来源:设计必修一数学(人教A版) 人教A版 题型:022

若函数f(x)、g(x)在给定的区间上具有单调性,利用增(减)函数的定义容易证得,在这个区间上:

(1)函数f(x)与f(x)+C(C为常数)具有________的单调性.

(2)C>0时,函数f(x)与C·f(x)具有________的单调性;C<0时,函数f(x)与C·f(x)具有________的单调性.

(3)若f(x)≠0,则函数f(x)与具有________的单调性.

(4)若函数f(x)、g(x)都是增(减)函数,则f(x)+g(x)仍是增(减)函数.

(5)若f(x)>0,g(x)>0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)是________(________)函数;若f(x)<0,g(x)<0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)是________(________)函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年山东猜题卷)对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源:2015届广西柳州铁路一中高一上学期第一次月考数学试卷(解析版) 题型:填空题

给出下列说法:

①集合,则它的真子集有8个;

的值域为

③若函数的定义域为,则函数的定义域为

④函数的定义在R上的奇函数,当时,,则当时,

⑤设(其中为常数,),若,则;其中正确的是        (只写序号)。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三11月练习数学试卷 题型:解答题

对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称.

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数定义在R上,常数,下列正确的命题个数是

①若,则函数的对称轴是直线

②函数的对称轴是

③若,则函数的对称轴是

④函数的图象关于直线对称

A.1           B.2            C.3            D.4

查看答案和解析>>

同步练习册答案