精英家教网 > 高中数学 > 题目详情
如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=
 
度.
精英家教网
分析:由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线.利用内角和定理先求得∠OBC+∠OCB=80°,所以可知∠OBC+∠OCB=
1
2
(∠ABC+∠ACB),把对应数值代入此关系式即可求得∠BAC的值.
解答:解:∵OB、OC是∠ABC、∠ACB的角平分线,
∴∠OBC+∠OCB=180°-100°=80°,而∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=80°,
∴∠ABC+∠ACB=160°,
∴∠BAC=180°-160°=20°.
故答案为20.
点评:本题通过三角形内切圆,考查切线的性质.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|2x-1|<3的解集为
(-1,2)
(-1,2)

B、(选修4-1几何证明选讲) 如图所示,AC和AB分别是⊙O的切线,且OC=3,AB=4,延长AO到D点,则△ABC的面积是
192
25
192
25

C.(坐标系与参数方程选做题)参数方程
x=cosα
y=1+sinα
(α为参数)化成普通方程为
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)(几何证明选讲)如图所示,AC和AB分别是圆O的切线,B、C 为切点,且OC=3,AB=4,延长OA到D点,则△ABD的面积是
48
5
48
5

查看答案和解析>>

科目:高中数学 来源:河南省许昌高级中学2006-2007学年下期期末教学质量评估试卷、高二数学 题型:013

如图所示,O是半径为1的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是(  )]

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;

(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。

查看答案和解析>>

同步练习册答案