精英家教网 > 高中数学 > 题目详情

设函数f(x)=(x-a)|x|+b
(1)当a=2,b=3,画出函数f(x)的图象,并求出函数y=f(x)的零点;
(2)设b=-2,且对任意x∈(-∞,1],f(x)<0恒成立,求实数a的取值范围.

解:(1)当a=2,b=3时
函数f(x)=(x-2)|x|+3的解析式可化为:

故函数的图象如下图所示:

当x≥0时,由f(x)=0,得x2-2x+3=0,此时无实根;
当x<0时,由f(x)=0,得x2-2x-3=0,得x=-1,x=3(舍).
所以函数的零点为x=-1.
(2)当b=-2时,由f(x)<0得,(x-a)|x|<2.
当x=0时,a取任意实数,不等式恒成立;
当0<x≤1时,,令,则g(x)在0<x≤1上单调递增,
∴a>gmax(x)=g(1)=-1;
当x<0时,,令
则h(x)在上单调递减,单调递增;

综合 a>-1.
分析:(1)将a=2,b=3代入,利用零点分段法,可求出函数f(x)的解析式,根据二次函数的图象和性质,可得函数f(x)的图象,进而分析函数图象可得答案.
(2)将b=-2代入可将f(x)<0可化为(x-a)|x|<2,对x进行分类讨论后,综合讨论结果,可得答案.
点评:本题考查的知识点是函数恒成立问题,二次函数的图象和性质,函数的零点,熟练掌握二次函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案