精英家教网 > 高中数学 > 题目详情
若向量
a
b
右夹角为6我°,|
a
|=|
b
|=1,则
a
•(
a
-
b
)=(  )
A.1+
3
2
B.1-
3
2
C.
3
2
D.
1
2
a
•(
a
-
b
)=
a
t
-
a
• 
b
=1-1×1cos60°=
1
t

故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,正确命题的个数是(  )
①命题“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②双曲线
x2
a2
-
y2
b2
=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且
AB
BF
=0,则此双曲线的离心率为
5
+1
2

③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A-C)=1,则a、c、b成等比数列.
④已知
a
b
是夹角为120°的单位向量,则向量λ
a
+
b
a
-2
b
垂直的充要条件是λ=
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)
的图象中,相邻两个对称中心的距离为
π
2

②若锐角α,β满足cosα>sinβ,则α+β<
π
2

③函数f(x)=ax2-2ax-1有且仅有一个零点,则实数a=-1;
④要得到函数y=sin(
x
2
-
π
4
)
的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位.
⑤非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°.
其中所有真命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
的夹角为θ,
a
=(3,3),2
b
-
a
=(-1,1)
,若直线2x-y-8=0沿向量
b
平移,所得直线过双曲线
x2
m2
-
y2
22
=1
的右焦点,(i)cosθ=
3
10
10
3
10
10
;(ii)双曲线
x2
m
-
y2
22
=1
的离心率e=
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确命题的个数是(  )
①命题“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②双曲线
x2
a2
-
y2
b2
=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且
AB
BF
=0,则此双曲线的离心率为
5
+1
2

③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A-C)=1,则a、c、b成等比数列.
④已知
a
b
是夹角为120°的单位向量,则向量λ
a
+
b
a
-2
b
垂直的充要条件是λ=
5
4
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

同步练习册答案