精英家教网 > 高中数学 > 题目详情
证明f(x)=cos不是周期函数.

证明:假设f(x)=cos是周期函数,则有常数T(T≠0),使得对任意x有

cos=cos.               ①

上式中,令x=0,则有cos=cos0=1.

=2mπ(m为整数,m≠0).     ②

在①中令x=T,有cos=cos=1,

=2nπ(n为整数,n≠0).      ③

③÷②可得.

是无理数,是有理数,两者不能相等,

因此f(x)=cos不是周期函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设平面向量
a
=(cosx,sinx),
b
=(cosx+2
3
,sinx)
c
=(sinα,cosα)
,x∈R,
(Ⅰ)若
a
c
,求cos(2x+2α)的值;
(Ⅱ)若x∈(0,
π
2
)
,证明
a
b
不可能平行;
(Ⅲ)若α=0,求函数f(x)=
a
•(
b
-2
c
)
的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(x-
π
4
)
.先把y=f(x)的图象上所有点向左平移
π
4
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
1
2
(纵坐标不变)得到函数y=g(x)的图象.
(1)写出函数g(x)的解析式;
(2)已知f(α)=
3
5
α∈(
π
2
2
)
,求f(2α)的值;
(3)设g1(x),g2(x)是定义域为R的两个函数,满足g2(x)=g1(x+θ),其中θ是常数,且θ∈[0,π].请设计一个函数y=g1(x),给出一个相应的θ值,使得g(x)=g1(x)•g2(x).并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x),y=g(x),规定:函数h(x)=
f(x)•g(x)    当x∈Df且x∈Dg
1      当x∈Df且x∉Dg
-1   当x∉Df且x∈Dg

(1)若f(α)=sinα•cosα,g(α)=cscα,写出h(α)的解析式;
(2)写出问题(1)中h(α)的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=cos(x-
π
4
)
.先把y=f(x)的图象上所有点向左平移
π
4
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
1
2
(纵坐标不变)得到函数y=g(x)的图象.
(1)写出函数g(x)的解析式;
(2)已知f(α)=
3
5
α∈(
π
2
2
)
,求f(2α)的值;
(3)设g1(x),g2(x)是定义域为R的两个函数,满足g2(x)=g1(x+θ),其中θ是常数,且θ∈[0,π].请设计一个函数y=g1(x),给出一个相应的θ值,使得g(x)=g1(x)•g2(x).并予以证明.

查看答案和解析>>

同步练习册答案