精英家教网 > 高中数学 > 题目详情
已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},BA,求m的取值范围.
解:当m+1>2m﹣1,即m<2时,B=?,满足BA,即m<2;
当m+1=2m﹣1,即m=2时,B=3,满足BA,即m=2;
当m+1<2m﹣1,即m>2时,由BA,得即2<m≤3;
综上所述:m的取值范围为m≤3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={x|-2<x<3},B={x|0<x<5},则A∪B=
{x|-2<x<5}
{x|-2<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2<x≤3}、B={x|y=
x-1
}
,则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,则m的取值范围为(  )
A、(-∞,3]
B、[1,3]
C、[2,3]
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},A⊆B,则m的取值范围为
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2≤x≤5},B={x|x<1或x>7},求A∩B,?R(A∪B),A∩(?RB).

查看答案和解析>>

同步练习册答案