精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx(a≠0)的图象在点(1,f(1))处的切线斜率为-6,其导函数f′(x)的最小值为-12.
(1)求a,b的值.
(2)求函数f(x)的单调递增区间.
(1)∵函数f(x)=ax3+bx,f'(x)=3ax2+b
∵f(x)在点(1,f(1))处的切线切线斜率为-6,
∴f′(1)=-6,即3a+b=-6 …①
又∵导函数f'(x)的最小值为-12,∴a>0且b=-12 …②
由①②解出  a=2,b=-12,∴f(x)=2x3-12x                 …(6分)
(2)∵f′(x)=6x2-12=6(x+
2
)(x-
2

∴令f′(x)>0,得x∈(-∞,-
2
)∪(
2
,+∞).
∴f函数f(x)的单调递增区间(-∞,-
2
),(
2
,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案