精英家教网 > 高中数学 > 题目详情
若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
3
CB
+
1
3
CA
,则
MA
MB
=(  )
A.-2B.2C.-2
3
D.2
3
CM
=
1
3
CB
+
1
3
CA

MA
=
CA
-
CM
=
CA
-(
1
3
CB
+
1
3
CA
)
=
2
3
CA
 - 
1
3
CB

MB
=
CB
-
CM
=
CB
-(
1
3
CB
+
1
3
CA
) =
2
3
CB
-
1
3
CA

MA
MB
=(
2
3
CA
-
1
3
CB
) • (
2
3
CB
1
3
CA
)
=
5
9
CA
 •
CB
-
2
9
|
CA
|
2
 -
2
9
|
CB
|
2
=
5
9
×|
CA
| ×|
CB
| ×cos60°-
2
9
(2
3
)
2
-
2
9
(2
3
)
2

=
5
9
×2
3
×2
3
×
1
2
-
2
9
×12-
2
9
×12
=
30
9
-
48
9
=-2

故选A
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
6
CB
+
2
3
CA
,则
MA
MB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等边△ABC的边长为2,平面内一点M满足
CM
=
1
3
CB
+
1
2
CA
,则
MA
MB
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
3
CB
+
1
3
CA
,则
MA
MB
=(  )

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修四2.4平面向量的数量积练习卷(一)(解析版) 题型:填空题

(09·天津文)若等边△ABC的边长为2,平面内一点M满足,则·=______________.

 

查看答案和解析>>

科目:高中数学 来源:天津 题型:填空题

若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
6
CB
+
2
3
CA
,则
MA
MB
=______.

查看答案和解析>>

同步练习册答案