精英家教网 > 高中数学 > 题目详情

已知函数f(x)=mx2-6x+2,∈R,若f(x)=0只有一正根,则实数m的范围为 ________.

m≤0,或m=
分析:f(x)=0只有一正根,即函数f(x)的图象和x轴的正半轴只有一个交点,
当m=0时函数为一次函数,图象是一条直线,经检验满足条件,
当m≠0时,函数是二次函数,分判别式等于0和判别式大于0两种情况来考虑.
解答:当m=0时,函数f(x)=mx2-6x+2,是一次函数,图象是一条直线,与x轴有唯一的交点(,0),满足条件.
当m≠0时,由△=36-8m=0得,m=,方程有唯一实根 x=
由△=36-8m>0,且两根之积<0 得,m<0,
综上,则实数的范围为 m≤0,或m=,故答案为 m≤0,或m=
点评:f(x)=0只有一正根,即函数f(x)的图象和x轴的正半轴只有一个交点,分函数为一次函数和函数为二次函数两种情况研究.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案