精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sna1=1,an=
Sn
n
+2(n-1)(n∈N+)

(1)求证:数列{
Sn
n
}
为等差数列;
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:
1
5
Tn
1
4
(1)证明:由题意:nan=Sn+2n(n-1),∴n(Sn-Sn-1)=Sn+2n(n-1)(n∈N+,n≥2)…(2分)
即:(n-1)Sn-nSn-1=2n(n-1),∴
Sn
n
-
Sn-1
n-1
=2

所以数列{
Sn
n
}
为等差数列;                                             …(6分)
(2)由(1)得:
Sn
n
=1+(n-1)×2
,∴Sn=2n2-n,
∴an=Sn-Sn-1=2n2-n-2(n-1)2+(n-1)=4n-3,(n∈N+,n≥2)…(8分)
1
anan+1
=
1
(4n-3)(4n+1)
=
1
4
(
1
4n-3
-
1
4n+1
)

Tn=
1
4
(1-
1
5
+
1
5
-
1
9
+…
1
4n-3
-
1
4n+1
)=
1
4
(1-
1
4n+1
)<
1
4
,…(10分)
又Tn为增函数,∴TnT1=
1
5
,∴
1
5
Tn
1
4
…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案