精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)判断函数f(x)在[3,5]上的单调性,并证明;
(2)求函数数学公式的最大值和最小值.

解:(1)f(x)在[3,5]上是单调增函数
证明:设x1,x2是区间[3,5]上的两个任意实数且x1<x2(2分)
=(5分)
∵3≤x1<x2≤5
∴x1-x2<02-x1>02-x2>0,
∴f(x1)<f(x2),
∴f(x)在[3,5]上是单调增函数(8分)

(2)∵f(x)在[3,5]上是单调增函数,所以x=3时,f(x)取最小值-4(10分)
x=5时f(x)取最大值-2(12分)
分析:(1)用单调性定义进行,先任取两个变量,且界定大小,再作差变形看符号.
(2)由(1)的结论知在区间上是增函数,则3,5分别对应最小值和最大值.
点评:本题主要考查函数单调性的证明和应用,在求最值时,一定要先研究单调性,
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)判断函数在区间上的单调性;

(2)求函数在区间是区间[2,6]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省江门市台山侨中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)判断f(x)的奇偶性;(2)若,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数

(1)判断函数的奇偶性;(4分)

(2)若关于的方程有两解,求实数的取值范围;(6分)

(3)若,记,试求函数在区间上的最大值.(10分)

 

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省营口市高一上学期期末检测数学试卷 题型:解答题

(本小题满分12分)

 已知函数

(1)判断其奇偶性;

(2)指出该函数在区间(0,1)上的单调性并证明;

(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(文科)试题 题型:解答题

(本小题满分12分)已知函数

(1)判断函数的奇偶性;(2)求证:方程至少有一根在区间

 

查看答案和解析>>

同步练习册答案