解:(I)f′(x)=﹣3x2+6x+9.
令f′(x)<0,解得x<﹣1或x>3,
所以函数f(x)的单调递减区间为(﹣∞,﹣1),(3,+∞).
(II)因为f(﹣2)=8+12﹣18+a=2+a,f(2)=﹣8+12+18+a=22+a,所以f(2)>f(﹣2).
因为在(﹣1,3)上f′(x)>0,所以f(x)在[﹣1,2]上单调递增,
又由于f(x)在[﹣2,﹣1]上单调递减,
因此f(2)和f(﹣1)分别是f(x)在区间[﹣2,2]上的最大值和最小值,
于是有22+a=20,解得a=﹣2.
故f(x)=﹣x3+3x2+9x﹣2,
因此f(﹣1)=1+3﹣9﹣2=﹣7,即函数f(x)在区间[﹣2,2]上的最小值为﹣7.
科目:高中数学 来源: 题型:
| π |
| 4 |
| π |
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| x |
| m |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com