精英家教网 > 高中数学 > 题目详情
已知方程f(x)=x2+ax+2b的两个根分别在(0,1),(1,2)内,则a2+(b-4)2的取值范围为 
 [     ]
A.  
B.    
C.    
D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a•lnx+b•x2在点(1,f(1))处的切线方程为x-y-1=0.
(1)求f(x)的表达式;
(2)若f(x)满足f(x)≥g(x)恒成立,则称f(x)是g(x)的一个“上界函数”,如果函数f(x)为g(x)=
t
x
-lnx
(t为实数)的一个“上界函数”,求t的取值范围;
(3)当m>0时,讨论F(x)=f(x)+
x2
2
-
m2+1
m
x
在区间(0,2)上极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+3
(1)当x∈[-1,3]时,求函数f(x)的值域;
(2)若关于x的方程|f(x)|-a=0有三个不相等的实数根,求实数a的值;
(3)已知t>0,求函数f(x)在区间[t,t+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x0处有相同的切线l.
(I)若a=
1
2
,求切线l的方程;
(II)已知m<x0<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x0时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)已知函数f (x)=
|x|x+2

(1)判断f (x)在区间(0,+∞)上的单调性,并证明;
(2)若关于x的方程f (x)=k有根在[2,3]内,求实数k的取值范围;
(3)若关于x的方程f (x)=k x2有四个不同的实数根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案