精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(
1
ax-1
+
1
2
)x2+bx+6(a,b为常数,a>1)
,且f(lglog81000)=8,则f(lglg2)的值是
 
分析:利用条件构造函数F(x)=f(x)-6=(
1
ax-1
+
1
2
)x2+bx为奇函数,即可求解f(lglg2)的值.
解答:解:∵函数f(x)=(
1
ax-1
+
1
2
)x2+bx+6(a,b为常数,a>1)

∴f(x)-6=(
1
ax-1
+
1
2
)x2+bx,
构造函数F(x)=f(x)-6=(
1
ax-1
+
1
2
)x2+bx=
2+ax-1
2(ax-1)
x2+bx=
ax+1
2(ax-1)
x2+bx,
则F(-x)=
1+ax
2(1-ax)
x2-bx
=-[
ax+1
2(ax-1)
x2+bx]=-F(x),
∴函数F(x)是奇函数.
∵lglog81000=lg(
lg1000
lg8
)=lg(
3
3lg2
)=lg(
1
lg2
)-lg(lg2),
∴f(lglog81000)=f(-lg(lg2))=8,
∵函数F(x)=f(x)-6是奇函数.
∴F(-lg(lg2))=-F(lg(lg2)),
即f(-lg(lg2))-6=-[f(lg(lg2))-6],
∴8-6=-f(lg(lg2))+6,
即f(lg(lg2))=4,
故答案为:4.
点评:本题主要考查函数奇偶性的应用,利用条件构造函数F(x)是解决本题的关键,考查学生的综合运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案