精英家教网 > 高中数学 > 题目详情

设x1,x2,…,xn都是正数,且=1.

求证:

答案:
解析:

  证明:不等式的左端,即,①

  ,取yi

  则.②

  由柯西不等式,有

  

  及.④

  综合①②③④,得

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;
(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2
证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是f(x)=
a
3
x3+
b-1
2
x2+x(a,b∈R,a>0)
的两个极值点,f(x)的导函数是y=f′(x)
(Ⅰ)如果x1<2<x2<4,求证:f′(-2)>3;
(Ⅱ)如果|x1|<2,|x2-x1|=2,求b的取值范围;
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)时,函数g(x)=f′(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用[a]表示不大于实数a的最大整数,如[1.68]=1,设x1,x2分别是方程x+2x=3及x+log2(x-1)=3的根,则[x1+x2]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1、x2是函数f(x)=
a
3
x3+
b-1
2
x2+x
(a>0)的两个极值点.
(1)若x1<2<x2<4,求证:f′(-2)>3;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存在实数m,使f(m)=-a.
(1)试推断函数f(x)在区间[0,+∞]上的单调性;
(2)设x1、x2是f(x)+bx=0的不等实根,求|x1-x2|的取值范围;
(3)比较f(m+3)与0的大小.

查看答案和解析>>

同步练习册答案