精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.
(Ⅰ)求证:PA平面BFD;
(Ⅱ)求二面角C-BF-D的余弦值.
精英家教网

精英家教网
(Ⅰ)证明:连结AC,BD与AC交于点O,连结OF.…(1分)
∵ABCD是菱形,∴O是AC的中点.…(2分)
∵点F为PC的中点,∴OFPA.…(3分)
∵OF?平面BFD,PA?平面BFD,∴PA平面BFD.…(6分)
(Ⅱ)如图,以点A为坐标原点,线段BC的垂直平分线所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立空间直角坐标系,令PA=AD=AC=1,
A(0,0,0),P(0,0,1),C(
3
2
1
2
,0)
B(
3
2
,-
1
2
,0),D(0,1,0)
F(
3
4
1
4
1
2
)

BC
=(0,1,0),
BF
=(-
3
4
3
4
1
2
)
.  …(8分)
设平面BCF的一个法向量为
n
=(x,y,z),
n
BC
n
BF
,得
y=0
-
3
4
x+
3
4
y+
1
2
z=0
,∴
y=0
z=
3
2
x

令x=1,则z=
3
2
,∴
n
=(1,0,
3
2
)
.…(10分)
∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC.
∵OFPA,∴OF⊥AC.
∵ABCD是菱形,∴AC⊥BD.
∵OF∩BD=O,∴AC⊥平面BFD.
AC
是平面BFD的一个法向量,
AC
=(
3
2
1
2
,0)

cos?
AC
n
>=
AC
n
|
AC
|•|
n
|
=
3
2
1+
3
4
×1
=
21
7

∴二面角C-BF-D的余弦值是
21
7
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案