精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:12+22+32+…+n2=
n(n+1)(2n+1)
6
证明:(1)当n=1时,左边=12=1,右边=
1×2×3
6
=1
,等式成立.(4分)
(2)假设当n=k时,等式成立,即12+22+32+…+k2=
k(k+1)(2k+1)
6
(6分)
那么,当n=k+1时,
12+22+32+…+k2+(k+1)2
=
k(k+1)(2k+1)
6
+(k+1)2
=
k(k+1)(2k+1)+6(k+1)2
6
=
(k+1)(2k2+7k+6)
6
=
(k+1)(k+2)(2k+3)
6
=
(k+1)[(k+1)+1][2(k+1)+1]
6

这就是说,当n=k+1时等式也成立.(10分)
根据(1)和(2),可知等式对任何n∈N*都成立.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=
12
Sn=n2an(n≥1)

(1)求S1,S2,S3并猜想Sn
(2)用数学归纳法证明(1)中猜想的正确性.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1时不等式左边需增加(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通一模)用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
,第一步应该验证左式是
1-
1
2
1-
1
2
,右式是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1+3+5+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案