精英家教网 > 高中数学 > 题目详情

已知在△ABC中,

.试判断△ABC的形状.

答案:等腰三角形
解析:

解:,得

.若tanBtanC=1,则,故在△ABC中,,故,即tanA无意义与题设矛盾.∴tanBtanC≠1可得.又BCÎ (0p )∴BC=60°同理由,得,得

,又ABÎ (0p )∴AB=150°ABC=180°,故由①②③A=120°,B=C=30°,∴△ABC为等腰三角形.

注意公式的变形,如和角的正切公式的变化形式为tana tanb =tan(a b )(1tana tanb ).此题若用切化弦法,则很难求值.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,点A、B的坐标分别为(-2,0)和(2,0),点C在x轴上方.
(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;
(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A、B、C所对的边分别为a、b、c;且a=3
3
,c=2,B=150°,求边b的长和S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosC+
3
2
c=b

(Ⅰ)求角A;
(Ⅱ)若a=l,且
3
c-2b=1
,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案