精英家教网 > 高中数学 > 题目详情

设R,r分别是△ABC的外接圆半径和内切圆半径,证明:

答案:略
解析:

证明:由三角形面积公式

得,,由正弦定理,得

a=2RsinAb=2RsinBc=2RsinC,代入上式得

∵ABC=π∴sinC=sin(π―A―B)=sin(AB)

代入得,


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,设 A,B,C,D是不共面的四点,P,Q,R,S分别是AC,BC,BD,AD的中点,若AB=12
2
,CD=4
3
,且四边形PQRS的面积是12
3
,求异面直线AB和CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文做理不做)正方体ABCD-A1B1C1D1中,p、q、r分别是AB、AD、B1C1的中点.那么正方体的过P、Q、R的截面图形是
正六边形
正六边形

(理做文不做)已知空间三个点A(-2,0,2)、B(-1,1,2)和C(-3,0,4),设
a
=
AB
b
=
AC
.当实数k为
k=-
5
2
或k=2
k=-
5
2
或k=2
时k
a
+
b
与k
a
-2
b
互相垂直.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市高三年级学情调研卷数学 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.

(1)求证: B1D^平面PQR;

(2)设二面角B1-PR-Q的大小为q ,求|cosq |.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(文做理不做)正方体ABCD-A1B1C1D1中,p、q、r分别是AB、AD、B1C1的中点.那么正方体的过P、Q、R的截面图形是________.
(理做文不做)已知空间三个点A(-2,0,2)、B(-1,1,2)和C(-3,0,4),设数学公式数学公式.当实数k为________时k数学公式与k数学公式互相垂直.

查看答案和解析>>

同步练习册答案