精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=6,an=3an-1+3n(n≥2,且n∈N*
(1)求证数列{}为等差数列,并求数列{an}的通项公式;
(2)若bn=an-3n,求数列{bn}的前n项和Sn
【答案】分析:(1)由an=3an-1+3n,等式两边同除3n得,=+1,构造等差数列{}并求出共通项公式,进而可得数列{an}的通项公式;
(2)若bn=an-3n,其通项由一个等差数列和等比数列相乘得到,则用错位相减法可求得数列{bn}的前n项和Sn
解答:解:(1)由an=3an-1+3n得:
=+1,
即:{}是以2为首项,1为公差的等差数列,
=n+1,
∴an=(n+1)•3n(n∈N*
(2)∵bn=n•3n
∴Sn=1×31+2×32+3×33+…+n×3n,…①
3Sn=1×32+2×33+…+(n-1)×3n+n×3n+1,…②
②-①得
2Sn=-(31+32+33+…+3n)+n×3n+1=•3n+1+
∴Sn=•3n+1+
点评:本题考查了构造法求数列的通项公式,以及错位相减法求数列的前n项和,难度中等
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案