精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a,b,c,分别是内角A,B,C所对边长,且cos2B-cos2A=2sin(
π
3
+B)sin(
π
3
-B).
(1)求角A的大小;
(2)若
AB
AC
=12,a=2
7
,求b,c(b<c).
分析:(1)已知等式左边利用二倍角的余弦函数公式化简,右边利用两角和与差的正弦函数公式化简,整理求出sinA的值,即可确定出A的度数;
(2)已知等式利用平面向量的数量积运算法则变形,将cosA的值代入求出bc的值,再利用余弦定理列出关系式,将bc及cosA的值代入求出b+c的值,即可求出b与c的值.
解答:解:(1)由已知得:(1-2sin2B)-(1-2sin2A)=2(
3
2
cosB+
1
2
sinB)(
3
2
cosB-
1
2
sinB),
∴2sin2A-2sin2B=
3
2
cos2B-
1
2
sin2B,即sin2A=
3
4

又因为A是锐角,∴sinA=
3
2

∴A=
π
3

(2)∵
AB
AC
=bccosA=12,cosA=
1
2

∴bc=24,
又a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc,即28=(b+c)2-72,
∴b+c=10,
又b<c,
∴b=4,c=6.
点评:此题考查了余弦定理,二倍角的余弦函数公式,两角和与差的正弦函数公式,平面向量的数量积运算,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)在锐角△ABC中,a、b、c分别是三内角A、B、C所对的边,若a=3,b=4,且△ABC的面积为3
3
,则角C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在锐角△ABC中,A>B,则有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=
21
,b=4,且BC边上高h=2
3

①求角C;
②a边之长.

查看答案和解析>>

同步练习册答案