精英家教网 > 高中数学 > 题目详情
已知数列{an} 的前n项和为Sn=
n2+n2

(1)求数列{an} 的通项公式;  
(2)求数列{anxn-1}的前n项和(其中x>0).
分析:(1)由题意知得
a1=S1,n=1
an=Sn -Sn-1,n≥2
,由此可知数列{an}的通项公式an
(2)数列{anxn}是由一个等差数列与一个等比数列的积构成的,求和适用错位相减法,当x=1时,即为等差数列求和,当x≠1时,将和式两边乘以公比x,再错位相减,即可得数列{anxn}的前n项和Tn
解答:解:(1)a1=S1=
1
2
(1+1)=1,
an=Sn-Sn-1=
1
2
(n2+n)-
1
2
[(n-1)2+(n-1)]
=n.
当n=1时,n=1=a1
∴an=n.
(2)Tn=1+2x+3x2+…nxn-1…①
xTn=x+2x2+3x3+…+nxn…②
当x≠1时:①-②得 (1-x)Tn=1+x+x2+…+xn-1-nxn=
1-xn
1-x
-nxn

Tn=
1-xn
(1-x)2
-
nxn
1-x

当x=1时,Sn=
1
2
n(n+1)综上
Tn=
1
2
n(n+1);x=1
1-xn
(1-x)2
-
nxn
1-x
;x≠1
点评:本题主要考查了利用数列的递推公式an=Sn-Sn-1求解数列的通项公式,以及等差数列的通项公式和性质,数列求和的方法--错位相减法,解题时要学会辨别数列类型,确定求和方法,认真运算,避免出错属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn+
an2
=3,n∈N*
,又bn是an与an+1的等差中项,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n-2an-34,n∈N+
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•嘉定区二模)已知数列{an}的通项为an=2n-1,Sn是{an}的前n项和,则
lim
n→∞
a
2
n
Sn
=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)已知数列{an}的前n项和Sn=5-4×2-n,则其通项公式为
an=
3(n=1)
4
2n
(n≥2)
an=
3(n=1)
4
2n
(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的递推公式为
a1=2
an+1=3an+1
bn=an+
1
2
(n∈N*),
(1)求证:数列{bn}为等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案