精英家教网 > 高中数学 > 题目详情
f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的(    )

A.充要条件                               B.充分而不必要条件

C.必要而不充分条件                   D.既不充分也不必要条件

答案:B  当f(x),g(x)均为偶函数时,由h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x),知h(x)为偶函数.但当h(x)为偶函数时,f(x),g(x)不一定为偶函数,如f(x)=x2+x,g(x)=-x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中:
①函数f(x)=x+
2
x
(x∈(0,1))
的最小值是2
2

②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);
③如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件;
④已知存在实数x使得不等式|x+1|-|x-1|≤a成立,则实数a的取值范围是a≥2.
其中正确的命题是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R上的函数f(x)=
-g(x)+ng(x)+m
是奇函数.
(Ⅰ)求y=g(x)与y=f(x)的解析式;
(Ⅱ)判断y=f(x)在R上的单调性并用单调性定义证明;
(Ⅲ)若方程f(x)=b在(-∞,0)上有解,试证:-1<3f(b)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知函数f(x)=sinx+cosx,g(x)=sinx-cosx,下列四个命题:
①将f(x)的图象向右平移
π
2
个单位可得到g(x)的图象;
②y=f(x)g(x)是偶函数;
③y=
f(x)
g(x)
是以π为周期的周期函数;
④对于?x1∈R,?x2∈R,使f(x1)>g(x2).
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)•g(x)  (当x∈Df且x∈Dg)
f(x)  (当x∈Df且x∉Dg)
g(x)  (当x∉Df且x∈Dg)

(Ⅰ)若函数f(x)=
1
x-1
,g(x)=x2,写出函数h(x)的解析式;
(Ⅱ)求问题(1)中函数h(x)的值域;
(Ⅲ)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

同步练习册答案