精英家教网 > 高中数学 > 题目详情

(1)坐标平面内的所有点;

(2)所有小于零的整数;

(3)某校高一(1)班的高个子学生;

(4)某一天到某商店买过货的顾客.

以上四者不能构成集合的是哪几个?

答案:
解析:

因为没有规定“高个子”的标准,所以(3)不能组成集合.由于(1)(2)(4)中的对象具有确定性,因此可以组成集合.


提示:

判断指定的对象能不能构成集合,关键在于能否找到一个明确的标准,看对象是不是确定的.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)当
e
1
e
2
都为单位向量时,求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共线,求向量
e
1
e
2
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x在闭区间[a,b]上的值域为[-1,3],则满足题意的有序实数对(a,b)在坐标平面内所对应点组成图形的长度为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)已知F1(-1,0),F2(1,0)为平面内的两个定点,动点P满足|PF1|+|PF2|=2
2
,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且
OA
+
OB
+
OC
=
0

(ⅰ)试探究:直线AB与OC的斜率之积是否为定值?证明你的结论;
(ⅱ)当直线AB过点F1时,求直线AB、OC与x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源:2011年上海市普陀区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为,其中,且向量
(1)当都为单位向量时,求
(2)若向量和向量共线,求向量的夹角.

查看答案和解析>>

同步练习册答案