精英家教网 > 高中数学 > 题目详情

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD(Ⅰ)证明AB⊥平面VAD;

(Ⅱ)求面VAD与面VDB所成的二面角的大小

方法一:(Ⅰ)证明:

(Ⅱ)解:取VD的中点E,连结AE,BE

∵△VAD是正三角形

∴AE⊥VD,AE=AD

∵AB⊥平面VAD     ∴AB⊥AE

又由三垂线定理知BE⊥VD

因此,是所求二面角的平面角

于是,

即得所求二面角的大小为

方法二:以D为坐标原点,建立如图所示的坐标系。

(Ⅰ)证明:不妨设,则

,得

,因而与平面内两条相交直线都垂直。

⊥平面

(Ⅱ)解:设中点,则

,得,又

因此,是所求二面角的平面角。

∴解得所求二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
(1)证明:AB⊥平面VAD;         
(2)求面VAD与面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥V-ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点.
(I)求证:平面EFG∥平面VCD;
(II)当二面角V-BC-A、V-DC-A分别为45°、30°时,求直线VB与平面EFG所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为
5
的等腰三角形.
(1)求二面角V-AB-C的平面角的大小;
(2)求四棱锥V-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)如果P为线段VC的中点,求证:VA∥平面PBD;
(Ⅱ)如果正方形ABCD的边长为2,求三棱锥A-VBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•唐山三模)如图,在四棱锥V-ABCD中,底面ABCD是边长为2
3
的菱形,∠BAD=60°,侧面VAD⊥底面ABCD,VA=VD,E为AD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC;
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与面VCD所成锐二面角的大小.

查看答案和解析>>

同步练习册答案