分析 (1)运用面面平行的判定定理,先证线面平行,即可得到证明;
(2)由线面垂直的性质和面面垂直的判定定理,即可得证;
(3)Q为线段PB中点时,PC⊥平面ADQ.运用线面垂直的判定定理即可得到结论.
解答
证明:(1)E,F分别是线段PC,PD的中点,所以EF∥CD,
又ABCD为正方形,AB∥CD,
所以EF∥AB,
又EF?平面PAB,所以EF∥平面PAB.
因为E,G分别是线段PC,BC的中点,所以EG∥PB,
又EG?平面PAB,所以,EG∥平面PAB.
所以平面EFG∥平面PAB;
(2)因为CD⊥AD,CD⊥PD,AD∩PD=D,所以CD⊥平面PAD,
又EF∥CD,所以EF⊥平面PAD,所以平面EFG⊥平面PAD;
(3)Q为线段PB中点时,PC⊥平面ADQ.
取PB中点Q,连接DE,EQ,AQ,
由于EQ∥BC∥AD,所以ADEQ为平面四边形,
由PD⊥平面ABCD,得AD⊥PD,
又AD⊥CD,PD∩CD=D,所以AD⊥平面PDC,
所以AD⊥PC,
又三角形PDC为等腰直角三角形,E为斜边中点,所以DE⊥PC,
AD∩DE=D,所以PC⊥平面ADQ.
点评 本题考查线面位置关系的证明,主要是面面平行和面面垂直、以及线面垂直的证明,注意运用转化思想,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,8) | B. | $[2,\frac{17}{4})$ | C. | $(2,\frac{17}{4}]$ | D. | (2,8] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com