精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx的图象是曲线C,点是曲线C上的一系列点,曲线C在点An(an,f(an))处的切线与y轴交于点Bn(0,bn),若数列{bn}是公差为2的等差数列,且f(a1)=3.
(1)分别求出数列{an}与数列{bn}的通项公式;
(2)设O为坐标原点,Sn表示△AnBn的面积,求数列{Sn}的前n项和Tn
【答案】分析:(1)求导函数,确定曲线C在点An(an,f(an))处的切线方程,令x=0,可得bn=lnan-1,利用数列{bn}是公差为2的等差数列,可得,根据f(a1)=3,可得a1=e3,由此即可求得数列的通项;
(2)Sn=×bn×an=n×e2n+1,Tn=1×e3+2×e5+…+n×e2n+1,利用错位相减法即可求和.
解答:解:(1)求导函数可得f′(x)=,则曲线C在点An(an,f(an))处的切线方程为y-lnan=(x-an
令x=0,则y-lnan=-1,∴bn=lnan-1
∴bn+1-bn=lnan+1-1-lnan+1=2

∵f(a1)=3,
∴ln(a1)=3,
∴a1=e3
∴an=e2n+1
∴bn=lnan-1=2n;
(2)Sn=×bn×an=n×e2n+1
∴Tn=1×e3+2×e5+…+n×e2n+1
∴e2Tn=1×e5+2×e7+…+(n-1)×e2n+1+n×e2n+3
①-②可得Tn-e2Tn=1×e3+1×e5+…+1×e2n+1-n×e2n+3
∴Tn=
点评:本题考查数列与函数的结合,考查数列的通项,考查数列的求和,解题的关键是确定数列的通项,利用错位相减法求数列的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案