精英家教网 > 高中数学 > 题目详情
(2006•崇文区一模)双曲线
x2
9
-
y2
16
=1
的左、右焦点为F1、F2,则左焦点F1到渐进线的距离为
4
4
,若双曲线上一点P使得∠F1PF2为锐角,则P点横坐标的取值范围是
x<-
3
41
5
x>
3
41
5
x<-
3
41
5
x>
3
41
5
分析:先求出双曲线的焦点坐标和渐近线方程,运用点到直线的距离公式计算左焦点F1到渐进线的距离即可,再设双曲线上一点P(x,y),若双曲线上一点P使得∠F1PF2为锐角,则
PF1
PF2
>0,由此列不等式解得P点横坐标的取值范围
解答:解:双曲线
x2
9
-
y2
16
=1
的左、右焦点坐标为F1(-5,0)、F2(5,0),渐近线方程为y=±
4
3
x
∴F1到渐进线的距离为
|4×(-5)+3×0|
32+42
=4
设P(x,y),则
PF1
=(x+5,y),
PF2
=(x-5,y),
∵cos∠F1PF2=
PF1
 •
PF2
|
PF1|
|
PF2|
>0
PF1
PF2
>0
∴(x+5,y)•(x-5,y)>0   即x2+y2-25>0  又
x2
9
-
y2
16
=1

25
9
x2>41,解得x<-
3
41
5
或 x>
3
41
5

故答案为:x<-
3
41
5
或 x>
3
41
5
点评:本题考察了双曲线的标准方程及几何意义,解题时要能熟练的由双曲线定义和标准方程解焦点三角形问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•崇文区一模)如果复数
1+bi
1+i
(b∈R)的实部和虚部互为相反数,则b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)已知直线m、n及平面α、β,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)如图,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,点E是棱BC的中点,AB=BC=AA′
(I)求证直线CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大小;
(III)求直线CA′与平面BB′C′C所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)某足球赛事中甲乙两中球队进入决赛,但乙队明显处于弱势,乙队为争取胜利决定采取这样的战术:顽强防守,0:0逼平甲队,进入点球大战.现规定:点球大战中每队各出5名队员,且每名队员都踢一球,假设在点球大战中双方每名运动员进球概率均为
34
.求:
(I)乙队踢进4个球的概率有多大?
(II)5个点球过后是4:4或5:5平局的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)已知f(x)=ax3+x2+cx是定义在R上的函数,f(x)在[-1,0]和[4,5]上是减函数,在[0,2]上是增函数.
(I)求c的值;
(II)求a的取值范围;
(III)在函数f(x)的图象上是否存在一点M(x0,y0),使得曲线y=f(x)在点M处的切线的斜率为3,若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案