精英家教网 > 高中数学 > 题目详情
7.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1-AB-C的余弦值.

分析 (Ⅰ)推导出A1O⊥AC,由此利用侧面AA1C1C⊥底面ABC,能证明A1O⊥平面ABC.
(Ⅱ)以O为原点,OB,OC,OA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角A1-AB-C的余弦值.

解答 证明:(Ⅰ)∵AA1=A1C,且O为AC的中点,∴A1O⊥AC,…(2分)
又∵侧面AA1C1C⊥底面ABC,交线为AC,且A1O?平面AA1C1C,
∴A1O⊥平面ABC.…(4分)
解:(Ⅱ)以O为原点,OB,OC,OA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.
由已知可得O(0,0,0),A(0,-1,0),${A_1}(0,0,\sqrt{3})$,$B(\sqrt{3},0,0)$
∴$\overrightarrow{AB}=(\sqrt{3},1,0)$,$\overrightarrow{{A_1}B}=(\sqrt{3},0,-\sqrt{3})$,
…(6分)
设平面AA1B的一个法向量为$\overrightarrow m=(x,y,z)$,
则有$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AB}=0}\\{\overrightarrow m•\overrightarrow{{A_1}B}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{\sqrt{3}x+y=0}\\{\sqrt{3}x-\sqrt{3}z=0}\end{array}}\right.$,
令x=1,得$y=-\sqrt{3}$,z=1
∴$\overrightarrow m=(1,-\sqrt{3},1)$…(8分)
∵A1O⊥平面ABC
∴平面ABC的一个法向量$\overrightarrow n=(0,0,\sqrt{3})$…(10分)
∴$cos<\overrightarrow m,\overrightarrow n>=\frac{1}{{\sqrt{5}}}=\frac{{\sqrt{5}}}{5}$
又二面角A1-AB-C是锐角
∴二面角A1-AB-C的余弦值为 $\frac{{\sqrt{5}}}{5}$…(12分)

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.一组数x,y,4,5,6的均值是5,方差是2,则xy=(  )
A.25B.24C.21D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解下列关于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,边长为1的正△OAB的顶点A,B均在第一象限,设点A在x轴的射影为C,∠AOC=α.
(1)试将$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函数f(α),并写出其定义域;
(2)求函数f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆(x+1)2+(y-2)2=1上一点P到直线4x-3y-5=0的距离为d,则d的最小值为(  )
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e-x,则f'(-1)=(  )
A.$\frac{1}{e}$B.$-\frac{1}{e}$C.eD.-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$.现从袋中任意摸出2个球.
(Ⅰ) 用含n的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n的值.(直接写出n的值)
(Ⅱ) 若n=15,且摸出的2个球中至少有1个白球的概率是$\frac{4}{7}$,设X表示摸出的2个球中红球的个数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=2an+1
(I)求证数列{an+1}是等比数列;
(II)设cn=n•(an+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}-β$)=-$\frac{1}{2}$,cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,则α+β=$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案