精英家教网 > 高中数学 > 题目详情
如图,已知斜三棱柱ABC—A1B1C1中,∠BCA=90°,AC=BC=a,点A1在底面ABC上的射影恰为AC的中点D,BA1⊥AC1.

(1)求证:BC⊥平面A1ACC1;

(2)求二面角B-AA1-C的正切值.

答案:(1)证明:∵A1D⊥平面ABC,∴A1D⊥BC.

又AC⊥BC,∴BC⊥平面A1-AC-C1.

(2)解:作CM⊥AA1于M,∵BC⊥平面A1ACC1,

由三垂线定理得知AA1⊥BM,

∴∠BMC是二面角BAA1C的平面角.

∵BA1⊥AC1,BC⊥平面A1ACC1,由三垂线定理的逆定理知A1C⊥AC1,

∴四边形A1ACC1是菱形.∴A1A=AC=a.

又∵A1D⊥AC于D,D是AC中点,∴AA1=CA1=AC=a.

∴△A1AC是正三角形,∴CM=a.

BC=a,∴tan∠BMC=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成的角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥AB;
(3)求二面角B1-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥C1A;
(3)求二面角B1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成的角为θ,且
AB1⊥BC1,点B1在底面上的射影D在BC上.
(I)若D点是BC的中点,求θ;
(Ⅱ)若cosθ=
13
,且AC=BC=AA1=a,求二面角C-AB-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)如图,已知斜三棱柱ABC-A1B1C1中,点B1在底面ABC上的射影落在BC上,CA=CB=a,AB=
2
a

(1)求证:AC⊥平面BCC1B1
(2)当BB1与底面ABC所成的角为60°,且AB1⊥BC1时,求点B1到平面AC1的距离.

查看答案和解析>>

同步练习册答案