精英家教网 > 高中数学 > 题目详情
若函数f(x+1)=x2-2x+1的定义域为[-2,6],则函数y=f(x)的单调递减区间
[-1,2]
[-1,2]
分析:由已知函数f(x+1)=x2-2x+1的定义域为[-2,6],可得-2≤x≤6,进而-1≤x+1≤7,再利用换元法求得函数的解析式,进而得出函数y=f(x)的单调递减区间.
解答:解:∵函数f(x+1)=x2-2x+1的定义域为[-2,6],∴-2≤x≤6,∴-1≤x+1≤7.
令x+1=t,则x=t-1,且-1≤t≤7,
∴f(t)=(t-1)2-2(t-1)+1=(t-2)2
∴函数y=f(x)的单调递减区间是[-1,2].
故答案为[-1,2].
点评:本题考查了函数的定义域和单调性,正确理解函数的定义域是自变量的取值范围和掌握二次函数的单调性是解题的关键.另外利用换元法是解决此类题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知f(x)是定义在R上的函数,对任意x∈R都有f(x+4)=f(x)+2f(2),若函数f(x-1)的图象关于直线x=1对称,且,,则f(2011)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的函数f(x),有下述四个命题;
①若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
②若对x∈R,有f(x+1)=f(x-1),则y=f(x)的图象关于直线x=1对称;
③若函数f(x-1)的图象关于直线x=1对称,则f(x)为偶函数;
④函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称.
其中正确命题为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x+1)的定义域为[0,3),则f(2x)的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)已知命题p:函数y=2-ax+1恒过(1,2)点;命题q:若函数f(x-1)为偶函数,则f(x)的图象关于直线x=1对称,则下列命题为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x+1)=x3-x+1,则f(2)=(  )

查看答案和解析>>

同步练习册答案