已知函数
.
(1)当x∈[2,4]时.求该函数的值域;
(2)若f(x)≥mlog2x对于x∈[4,16]恒成立,求m的取值范围.
考点:
函数恒成立问题;二次函数在闭区间上的最值.
专题:
函数的性质及应用.
分析:
(1)令t=log4x,则可将函数在x∈[2,4]时的值域问题转化为二次函数在定区间上的值域问题,利用二次函数的图象分析出函数的最值,即可得到函数的值域;
(2)令t=log4x,则可将已知问题转化为2t2﹣3t+1≥2mt对t∈[1,2]恒成立,即
对t∈[1,2]恒成立,求出不等号右边式子的最小值即可得到答案.
解答:
解:(1)
,
![]()
此时,
,
当t=
时,y取最小值
,
当t=
或1时,y取最大值0,
∴![]()
(2)若f(x)≥mlog2x对于x∈[4,16]恒成立,
令t=log4x,
即2t2﹣3t+1≥2mt对t∈[1,2]恒成立,
∴
对t∈[1,2]恒成立
易知
在t∈[1,2]上单调递增
∴g(t)min=g(1)=0,
∴m≤0.
点评:
本题考查的知识点是对数函数的性质,二次函数在闭区间上的最值问题,函数恒成立问题,函数的最值,是函数图象和性质的简单综合应用,难度中档
科目:高中数学 来源:2013-2014学年广东省深圳市宝安区高三上学期调研考试文科数学试卷(解析版) 题型:解答题
已知函数
,
.
(1)当
为何值时,
取得最大值,并求出其最大值;
(2)若
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省高三5月高考三轮模拟文科数学试卷(解析版) 题型:解答题
已知函数
,
(1)当
且
时,证明:对
,
;
(2)若
,且
存在单调递减区间,求
的取值范围;
(3)数列
,若存在常数
,
,都有
,则称数列
有上界。已知
,试判断数列
是否有上界.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题
已知函数
,
.
(1)当
时,求函数
的最小值;
(2)当
时,讨论函数
的单调性;
(3)是否存在实数
,对任意的
,且
,有
,恒成立,若存在求出
的取值范围,若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com