精英家教网 > 高中数学 > 题目详情
数列{an} 中,a1=2,an+1=an+cn(c是不为零的常数,n=1,2,3,…),且a1,a2,a3成等比数列.
(Ⅰ) 求c的值;
(Ⅱ)求{an} 的通项公式;
(Ⅲ)证明数列{
an-c
n
}
是等差数列.
(Ⅰ)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,
所以(2+c)2=2(2+3c),解得c=0(舍)或c=2.
故c=2;(5分)
(II)当n≥2时,由于a2-a1=c,a3-a2=2c,an-an-1=(n-1)c,
所以an-a1=[1+2++(n-1)]c=
n(n-1)
2
c

又a1=2,c=2,故an=2+n(n-1)=n2-n+2(n=2,3,).
当n=1时,上式也成立,
所以an=n2-n+2(n=1,2,);(5分)
(Ⅲ)bn=
an-c
n
=n-1
;bn+1=n.bn+1-bn=1,
∴数列{
an-c
n
}
是等差数列.(5分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中a1=a,a2=b,且满足an+1=an+an+2则a2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

同步练习册答案