精英家教网 > 高中数学 > 题目详情

已知命题p:方程x2+mx+4=0有两个不等的负实数根.命题q:方程4x2+4(m-1)x+1=0无实数根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.

答案:
解析:

  解析:先将p、q中m的范围求出,然后根据“p或q”为真,“p且q”为假,可知p和q中必是一真一假,则分两种情况列出不等式组求解,由p得则m>4

  由q知,=16(m-1)2-16=16(m2-2m)<0

  则0<m<2

  ∵“p或q”为真,“p且q”为假

  ∴p为真,q为假,或p为假q为真

  则解得m>4或0<m<2


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案