精英家教网 > 高中数学 > 题目详情
已知sinα=
3
5
,α∈(-
π
2
π
2
),则cos(α+
5
4
π)=
 
分析:由α的范围,得到cosα大于0,由sinα的值,利用同角三角函数间的基本关系求出sinα的值,利用诱导公式化简所求式子中,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简后,把各自的值代入即可求出值.
解答:解:∵sinα=
3
5
,α∈(-
π
2
π
2
),
∴cosα=
1-sin2α
=
4
5

则cos(α+
5
4
π)=cos[π+(α+
π
4
)]=-cos(α+
π
4
)=-cosαcos
π
4
+sinαsin
π
4
=-
4
5
×
2
2
+
3
5
×
2
2
=-
2
10

故答案为:-
2
10
点评:此题考查了两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ=
3
5
θ∈(
π
2
,π)
,求tanθ,cos(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,则cos2α的值为(  )
A、-
24
25
B、-
7
25
C、
7
25
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,且α∈(
π
2
,π)
,那么sin2α等于(  )
A、
12
25
B、-
12
25
C、
24
25
D、-
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,α∈(0,
π
2
)

(1)求cosα的值;
(2)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)已知sinθ=
3
5
θ∈(0,
π
2
)
,求tanθ和cos2θ的值.

查看答案和解析>>

同步练习册答案