精英家教网 > 高中数学 > 题目详情
(2012•宝山区一模)已知集合A={x||x-6|≤2},B={x|y=lg(
4x
-1
)},则A∩B=
分析:集合A和集合B的公共元素构成集合A∩B,由此利用集合A={x||x-6|≤2},B={x|y=lg(
4
x
-1
)},能求出A∩B.
解答:解:∵集合A={x||x-6|≤2}={x|4≤x≤8},
B={x|y=lg(
4
x
-1
)}={x|
4
x
-1>0
}={x|0<x<4},
∴A∩B=∅.
故答案为:∅.
点评:本题考查交集的定义的运算,是基础题.解题时要认真审题,注意含绝对值不等式和对数函数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宝山区一模)两个圆锥有等长的母线,它们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为1:2,则它们的体积比是
1:
10
1:
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)设f(x)是定义在R上的奇函数,且满足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,则实数m的取值范围是
(-1,
2
3
(-1,
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)已知函数f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整数解的个数,求g(k);
(3)记数列{
12
an
}
的前n项和为Sn,是否存在正数λ,对任意正整数n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)已知等差数列{an},a2=-2,a6=4,则a4=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)方程x2-2x+5=0的复数根为
1±2i
1±2i

查看答案和解析>>

同步练习册答案