精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)设,求证:Tn<3.
【答案】分析:(Ⅰ)利用数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项,建立方程,求出公差与公比,即可得到数列{an},{bn}的通项公式;
(Ⅱ)利用错位相减法求出数列的和,即可证得结论.
解答:(Ⅰ)解:设d、q分别为等差数列{an}、等比数列{bn}的公差与公比,且d>0
由a1=1,a2=1+d,a3=1+2d,分别加上1,1,3有b1=2,b2=2+d,b3=4+2d…(2分)
∵数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项
∴(2+d)2=2(4+2d),∴d2=4,
∵d>0,∴d=2,∴…(4分)
…(6分)
(II)证明:,①
.②
①-②,得.…(8分)
.…(10分)
.∴…(12分)
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案