精英家教网 > 高中数学 > 题目详情
如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A.
2
2
B.
3
3
C.
6
3
D.
2
2
3
精英家教网
令椭圆的右端点为M,连接CM,由题意四边形OABC为平行四边形,且∠OAB=45°,B,C在椭圆上,可得∠COM=∠CMO=∠OAB=45°,则有∠OCM=90°,故可得kOC×kCM=-1
又四边形OABC为平行四边形,B,C在椭圆上,由图形知|BC|=a,且BCOA由椭圆的对称性知,B,C两点关于y轴对称,故C的横坐标为
a
2
,代入椭圆的方程得
(
a
2
)
2
a2
+
y2
b2
=1
,解得y=±
3
2
b,
由图形知C(
a
2
3
2
b),故有kOC=
3
b
2
a
2
kCM=
3
b
2
-
a
2
,所以有
3
b
2
a
2
×
3
b
2
-
a
2
=-1
解得a2=3b2,故可得c2=2b2,所以e2=
2
3
,得e=
6
3

故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线ly轴上的截距为m(m≠0),且交椭圆于AB两不同点.

(1)求椭圆的方程;

(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源:2014届浙江效实中学高二上期末考试理科数学试卷(解析版) 题型:选择题

如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )

A.            B.             C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十二县(市)高二(下)期中数学试卷(理科)(解析版) 题型:选择题

如图所示,已知椭圆的方程为,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案