科目:高中数学 来源: 题型:
| -2x+3 |
| 2x-7 |
| f(x)-a |
| f(x)-b |
| x-a |
| x-b |
查看答案和解析>>
科目:高中数学 来源: 题型:
| -2x+3 |
| 2x-7 |
| 1 |
| 2 |
| 7 |
| 2 |
| f(x)-a |
| f(x)-b |
| 8(x-a) |
| x-b |
| 1 |
| 2 |
| 7 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,
这时函数g(x)只有两个零点,所以(1)不对
(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点
(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)
为了考察高中生学习语文与数学之间的关系,在某中学学生中随机地抽取了610名学生得到如下列表:
|
数学 | 及格 | 不及格 | 总计 |
| 及格 | 310 | 142 | 452 |
| 不及格 | 94 | 64 | 158 |
| 总计 | 404 | 206 | 610 |
由表中数据计算及
的观测值
问在多大程度上可以认为高中生的语文与数学成绩之间有关系?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,
这时函数g(x)只有两个零点,所以(1)不对
(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点
(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)
一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现在从该盒中随机取出一球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数Y的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求函数f(x)的单调区间和最小值;
(2)当b>0时,求证:bb≥
(其中e=2.718 28…是自然对数的底数);
(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(1)求
和c的值.
(2)求函数f(x)的单调递减区间(用字母a表示).
(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com