精英家教网 > 高中数学 > 题目详情

甲、乙两个平行班(甲班A老师教,乙班B老师教)进行某次数学考试,按学生考试及格与不及格统计成绩得到如下2×2列联表:

根据K2的值,可认为不及格人数的多少与不同老师执教有关系的把握大约为

[  ]
A.

99.5%

B.

99.9%

C.

95%

D.

无充分依据

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
精英家教网
(Ⅰ)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(Ⅱ)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(Ⅰ)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(Ⅱ)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11 n22-n12n21)2
n1+ n2+n+1n+2

P(k2≥K) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
(1)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(2)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P≥(k2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.814 5.024

查看答案和解析>>

科目:高中数学 来源:2014届福建高二下第一次月考理科数学试卷(解析版) 题型:解答题

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;

(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.

 

甲班

(A方式)

乙班

(B方式)

总计

成绩优秀

 

 

 

成绩不优秀

 

 

 

总计

 

 

 

附:

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2. 706

3. 841

5. 024

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫北六校高三第二次精英联赛考试理科数学试卷 题型:解答题

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如右图).记成绩不低于90分者为“成绩优秀”.

(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望;   

(II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。

 

查看答案和解析>>

同步练习册答案