精英家教网 > 高中数学 > 题目详情
如图16所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 cm,高是cm,制造这个塔顶需要多少铁板?

图16

分析:转化为求这个四棱锥的侧面积.利用过四棱锥不相邻的两侧棱作截面,依此来求侧面等腰三角形的面积.

解:如图17所示,连接AC和BD交于O,连接SO,则有SO⊥OA,

图17

所以在△SOA中,SO=cm,OA=×2=cm,则有SA==3 cm

则△SAB的面积是×2×2=2cm2.

所以四棱锥的侧面积是4×2=8cm2.

答:制造这个塔顶需要8cm2铁板.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80
元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.

(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;

(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源:2013年山东省菏泽市鄄城一中高考数学三模试卷(文科)(解析版) 题型:解答题

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80
元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省烟台市高三年级期末考试文科数学 题型:解答题

(本小题满分12分)

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.

(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;

(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012届福建省泉州市高三上学期期中文科数学试卷 题型:解答题

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.

(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;

(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.

 

 

 

 

查看答案和解析>>

同步练习册答案