精英家教网 > 高中数学 > 题目详情

函数若f(a)>f(-a),则实数a的取值范围是

[  ]
A.

(-1,0)∪(0,1)

B.

(-∞,-1)∪(1,+∞)

C.

(-1,0)∪(1,+∞)

D.

(-∞,-1)∪(0,1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)(x∈R)是可导的函数,若满足(x-2)f′(x)≥0,则必有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx.

(1)若f(x)≥ax-1对任意x>0恒成立,求实数a的取值范围;

(2)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省株洲二中高三(下)第十一次月考数学试卷(理科)(解析版) 题型:解答题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

同步练习册答案