精英家教网 > 高中数学 > 题目详情
用解析法表示函数时,一个函数可以有两个或多个解析式吗?如果有,各解析式对自变量有何限制?函数定义域如何得到?

解:可以有两个或两个以上的解析式,这样的函数称为分段函数,但各解析式对自变量的取值范围不能出现公共部分,否则可能出现一个自变量的值求出两个函数值与函数定义矛盾.这时函数的定义域就是各个解析式中自变量取值范围所确定的集合的并集.

练习册系列答案
相关习题

科目:高中数学 来源:训练必修四数学人教A版 人教A版 题型:044

水车问题.

水车是一种利用水流的动力进行灌溉的工具,下图是一个水车的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2 m.如果水车每4 min逆时针转3圈,在水车轮边缘上取一点P,我们知道在水车匀速转动时,P点距水面的高度h(m)是一个变量,显然,它是时间t(s)的函数.我们知道,h与t的函数关系反映了这个周期现象的规律.为了方便,不妨从P点位于水车与水面交点Q时开始记时(t=0).

  首先,设法用解析式表示出这个函数关系,并用“五点法”作出这个函数在一个周期内的简图.

  其次,我们讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将发生哪些变化?若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?

查看答案和解析>>

科目:高中数学 来源: 题型:044

用解析法表示函数时,一个函数可以有两个或多个解析式吗?如果有,各解析式对自变量有何限制?函数定义域如何得到?

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

用解析法表示函数时,一个函数可以有两个或多个解析式吗?如果有,各解析式对自变量有何限制?函数定义域如何得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

水车问题.

水车是一种利用水流的动力进行灌溉的工具,图1-6-5是一个水车的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2 m.如果水车每4 min逆时针转3圈,在水车轮边缘上取一点P,我们知道在水车匀速转动时,P点距水面的高度h(m)是一个变量,显然,它是时间t(s)的函数.我们知道,h与t的函数关系反映了这个周期现象的规律.为了方便,不妨从P点位于水车与水面交点Q时开始记时(t=0).

首先,设法用解析式表示出这个函数关系,并用“五点法”作出这个函数在一个周期内的简图.

图1-6-5

其次,我们讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将发生哪些变化?若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?

查看答案和解析>>

同步练习册答案