精英家教网 > 高中数学 > 题目详情
求函数y=x=3处的导数.?

      

思路分析:定义法.?

       解:Δy=,?

?.?

       y′|x=3=-.?

       温馨提示:理解定义是求导数的基础.?

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
x2+ax-
5
3
a(a∈R)

(1)若函数f(x)在x=3处的切线方程是y=4x+b,求a,b的值;
(2)在(1)条件下,求函数f(x)的极值;
(3)若函数f(x)的图象与x轴只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•达州一模)已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(I)求函数f(x)在x=3处的切线斜率;
(Ⅱ)若函数f(x)在区间(m,m+
12
)上是单调函数,求实数m的取值范围;
(Ⅲ)若对任意k∈[-1,1],函数y=kx,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x)
(1)求函数f(x)在x=3处的切线斜率;
(2)若函数y=-x,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

同步练习册答案