精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
an
3n

(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn
解(1)证明:由bn=
an
3n
,得bn+1=
an+1
3n+1

bn+1-bn=
an+1
3n+1
-
an
3n
=
1
3
---------------------(2分)
所以数列{bn}是等差数列,首项b1=1,公差为
1
3
-----------(4分)
bn=1+
1
3
(n-1)=
n+2
3
------------------------(6分)
(2)an=3nbn=(n+2)×3n-1-------------------------(7分)
∴Sn=a1+a2+…+an=3×1+4×3+…+(n+2)×3n-1----①
3Sn=3×3+4×32+…+(n+2)×3n-------------------②(9分)
①-②得-2Sn=3×1+3+32+…+3n-1-(n+2)×3n
=2+1+3+32+…+3n-1-(n+2)×3n=
3n+3
2
-(n+2)×3n
------(11分)
Sn=-
3n+3
4
+
(n+2)3n
2
-----------------(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案