精英家教网 > 高中数学 > 题目详情

如图,四棱锥S- ABCD中,底面ABCD为平行四边形,ESA上一点,试探求点E的位置,使SC//平面EBD,并证明.

答:点E的位置是                        

证明:

中点


解析:

E的位置是 棱SA的中点  .

证明:取SA的中点E,连结EB,ED,AC,设AC与BD的交点为O,连结EO.

∵四边形ABCD是平行四边形,

∴点O是AC的中点.

又E是SA的中点,∴OE是ΔSAC的中位线.

∴OE//SC.

∵SC平面EBD,OE平面EBD,

∴SC//平面EBD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=SB=SC=2CD=2,侧面SBC⊥底面ABCD.
(1)由SA的中点E作底面的垂线EH,试确定垂足H的位置;
(2)求二面角E-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的正视图是边长为2的正方形,侧视图和俯视图是全等的等腰三角形,直线边长为2.
(1)求二面角C-SB-A的大小;
(2)P为棱SB上的点,当SP的长为何值时,CP⊥SA?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1)
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)是否存在点E使AE与平面SBD所成的角θ满足sinθ=
3
4
,若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若边BC上存在异于B,C的一点P,使得
PS
PD

(1)求a的最大值;
(2)当a取最大值时,求异面直线AP与SD所成角的大小;
(3)当a取最大值时,求平面SCD的一个单位法向量
n
及点P到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中.ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD.E为CD上一点,且CE=3DE.
(1)求证:AE⊥平面SBD;
(2)M、N分别在线段CD、SB上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案