精英家教网 > 高中数学 > 题目详情
已知圆 O:x2+y2=2交x轴正半轴于点A,点F满足
OF
=
2
2
OA
,以F为右焦点的椭圆 C的离心率为
2
2

(Ⅰ)求椭圆 C的标准方程;
(Ⅱ)设过圆 0上一点P的切线交直线 x=2于点Q,求证:PF⊥OQ.
(Ⅰ)A(
2
,0),F(1,0).
椭圆c=1,e=
2
2
,∴a=
2
,b2=a2-c2=1,
∴椭圆D的方程为
x2
2
+y2=1
.(5分)
(Ⅱ)证明:设点P(x1,y1),
过点P的圆的切线方程为y-y1=-
x1
y1
(x-x1
即y=-
x1
y1
(x-x1)+y1
由x12+y12=2得y=-
x1
y1
x+
2
y1

令x=2得y=-
2(x1-1)
y1
,故点Q(2,-
2(x1-1)
y1
)

∴KOQ=
x1-1
y1
,又KPF=
y1
x1-1
∴KPF•KOQ=-1
∴PF⊥OQ.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆
x2
2
+y2=1
交于不同的两点A、B.
(Ⅰ)设b=f(k),求f(k)的表达式,并注明k的取值范围;
(Ⅱ)若
OA
OB
=
2
3
,求直线l的方程;
(Ⅲ)若
OA
OB
=m(
2
3
≤m≤
3
4
),求△OAB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A,B.
(1)若弦AB的长为
4
3
,求直线l的方程;
(2)当直线l满足条件(1)时,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=r12(r1>0)与圆C:(x-a)2+(y-b)2=r22(r2>0)内切,且两圆的圆心关于直线l:x-y+
2
=0对称.直线l与圆O相交于A、B两点,点M在圆O上,且满足
OM
=
OA
+
OB

(1)求圆O的半径r1及圆C的圆心坐标;
(2)求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,圆C:(x-4)2+y2=4,P(m,n)(m•n≠0)是圆O和圆C外一点.
(1)过点P作圆O的两切线PA、PB,如图①,试用m,n表示直线AB的斜率;
(2)过点P分别向圆O,圆C引两条切线PA,PB和PM,PN,其中A,B,M,N为切点如图②,试在直线x+y-4=0上求一点P,使AB⊥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知圆O:x2+y2=b2与直线l:y=
3
(x-2)
相切.
(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;
(2)已知点A(1,
3
2
)
,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案