精英家教网 > 高中数学 > 题目详情

,则使函数为奇函数的的个数为          

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数f(x)=loga(x-2)-1(a>0,a≠1)的图象恒过定点(3,-1);
②若函数y=f(x+1)的定义域是[-1,1],则y=f(x)的定义域是[-2,0];
③若函数y=f(x)是奇函数,当x<0时,f(x)=x2+5x,则f(2)=6
④设α∈{-1,
1
3
1
2
,1,2,3}
,则使幂函数y=xα为奇函数且在(0,+∞)上单调递增的α值的个数为3个
⑤若函数y=|2x-1|-m(m∈R)只有一个零点,则m≥1
其中正确的命题的序号是
①③⑤
①③⑤
( 注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列说法中,正确的是
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,数学公式,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.


  1. A.
    ①④
  2. B.
    ①④⑤
  3. C.
    ②③④
  4. D.
    ①⑤

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆市铁人中学高三(上)第二次段考数学试卷(解析版) 题型:选择题

下列说法中,正确的是( )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x<a,则f(x)<0.
A.①④
B.①④⑤
C.②③④
D.①⑤

查看答案和解析>>

同步练习册答案